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The problem of propagation of weak discontinuities of solutions of quasi-linear 
hyperbolic systems is studied for the case when the characteristic surface satis- 

fies an overdefined first order system of diffe~ntial equations. A system of par- 
tial differential transport equations describing the propagation of a discontinuity 
along such characteristic surfaces is obtained. Systems of transport equations for 
a certain class of characteristic surfaces of the magnetic gasdynamics and crystal 

optics equations are given as an example. 
A law of propagation of weak discontin~ties over the region of constant mot- 

ion, is obtained for a quasi-linear system with four independent variables which 

describes a number of processes in the continuum mechanics. 

1, Consider an arbitrary quasi-linear hyperbolic system of equations given in the 
generalized sense [l] 

Here A i denote matrices with elements a’;, (Xj, t, U) and B is a vector with eleme- 

nts b+ (sit t, U). 
Let 9 = rp (xj) - t = 0 denote the characteristic surface of the system (1.1). Then 

.Jl = A,rp, + a** + A,rp, - A0 is the characteristic matrix of this system. When 
t = 0 , the characteristic determinant Y 

is a three-dimensional manifold. We shall assume that &vF are continuously different- 
iable functions of Xi, t and Tj in some region of the (2m 3_ 1) -dimensional space 

G and that N, + IV, in G for 1 < o and p < v (here and henceforth we assume 
that the function of the solution has been inserted into the equations QG =z 0). 

Let the functions of the solution U be continuous on the passage across the character- 
istic surface Q = 0 , while the normal derivatives suffer a finite discontinuity (we de- 
note it by [X!,], U, == irU/ &p). Then [ll 

It==1 

Here ok are scalar functions and fk are the right null vectors of the matrix A. BV vir- 
tue of the hy~rbo~~ character of (1.1). their number r is equal to (n - A), h 
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denoting the rank of the matrix A. 

Let us select from the characteristic surfaces of the system (1.1) a bundle c of surfa- 
ces satisfying the equation Qp = 0 (it can be assumed without loss of generality that 
p = l),and segregate the surfaces belonging to C into classes, according to the rank 

of the matrix A associated with each surface. We find then that for the surfaces of class 

Cp (1 < ~1 < v) we have Q1 = 0, ..,, Qp = 0 , and that by virtue of the hyper- 

bolic character of (1.1). h = (n - Ic, _ k, - . . . - k,) on such surfaces, 
If the class c, is nonempty (for some fixed ~ = S) , two possibilities may arise: 
a) the conditions of integability hold for the system of equations 

Q1 = 0, . . . . Q, = 0 (1.3) 

i.e. the Poisson brackets constructed from the functions of this system are equal to zero 
(the system (1.3) is complete); 

b) (1.3) is incomplete, but can be completed by incorporating the nonzero Poisson 
brackets in such a way that for the characteristic surfaces satisfying the resulting comp- 
lete system we have 

Q1 = 0,. . , , Q, = 0, P,,, = 0, . . . , Ps+L = 0 (1.4) 

Qp#O, if s+iql<v. 
Depending on which of the two cases arises, let us solve the complete system (1.3) 

or (1.4) with respect to derivatives I&, (1 < a < I), assuming that the corresponding 
Jacobian is not zero in some region G, of the space G . The resulting system of equa- 

tions 
‘PO = f((Pb9 “i, 0 (i<a<l, lfi<b<m, l<m) (1.5) 

will obviously be Jacobian, since it is equivalent to some complete system. When the 

case (b) applies, we have in (1.5) 1 > s, and J ,( s for the case (a). Moreover, .! < S 
only when not all Q1, . . . , Q8 are functionally independent, 

We find that the pattern of propagation of the discontinuities remains similar for 

every class C, . 
For class ci it was studied in a number of papers [l - S& We know that a discontin- 

uity localized at some point of the surface belonging to Cl propagates along the bicha- 
racteristic ray of the initial system (1.1). The magnitude of the discontinuity is found 
at every instant either from the transport equation (when k, = 1) , or from a set of 

transport equations (when k, > 1) [l - 61. 
The transport equations together with a set of equations of the bicharacteristics and 

equations describing the variation of q ij along the bicharacteristics (Cpij = 3’9 ’ 
aziazj) form a system of ordinary differential equations which can be solved in the gen- 
eral case by numerical methods, provided that the flow at one side of the characteris- 
tic surface for the quasi-linear system is also known (the flow parameters at this side 

will be denoted by a plus sign). 
In Sect. 5 it will be shown that such a system of ordinary differential equations can 

be solved by analytic methods provided that 

a~,~ = aGL, (U), b+ = b+(U), U+ = const, U,+ = 0, m = 3 /'.S) 

The law of propagation of weak discontinuities coincides, under the conditions (1.6) 
if b+ = con& and k, = l,with the law of propagation of weak discontinuities for the 
gasdynamic equations 13, 43 with the accuracy of up to the constants. 



If the surface ,!$ belongs to the class C, (1 < s < Y), then a discontinuity origina- 
ting at any point of such a surface propagates across an 1 -dimensional manifold where 

1 denotes the number of equations in (1.5). 
Sections 2 and 3 deal with the proof of this assertion. The law of propagation of the 

discontinuities for the class c, is obtained as a particular case of the investigation of 

an arbitrary class C, when 1 = 1. 

2. We shall show that the surfaces S satisfying the system (1.5) can be specified in 
a parametric form using 1 parameters. In other words, each parameter S, (1 < u < 1) 
defines on the surface 

ri = gi (Slr * - * 9 sl)~ ‘pi = ‘Di (Sl, . . . , .s[), Cpij = @ij (sl~ * - - 9 Sl) (2.1) 

a curve whose direction at each point is given by 

y, = {Y,l, * * * t Y,,>, Yaj = a,j, Yub = - df,/%% (I < a.i < 1; 1 j- f d b d fn) f2e2) 

where 6,f is the Kronecker delta. 
Let us write for each equation of (1.5) a corresponding system of ordinary differential 

equations 
(2.3) 

This gives ,! systems of the form (2.3) and by virtue of the completeness of (1.5) the 
functions F, = cqa - f, (q,,, xi, t) = const represent the first integrals (1 < a < 

4 for each of these sets. Separating from the solutions of (2.3) those for which the 

conditions F, = 0 hold, we find that 1 curves can be drawn through any point of the 
surface S such that a planar element {xi, cpi}at each point of these curves is an integ- 

ral element of the system (1.5). and satisfies (2.3). 
Let us consider a system of equations in gi (st,... .sl) for a fixed value of i 

agi I ds~ = ?/ai (1 <a < 1) (2.4) 

We shall assume that the functions Yai are continuously differentiable in some subre- 
gion s’, of an r?z-dimensional space X with points {Xi} . Then the necessary and suff- 
icient condition of solvability of (2.4) is valid in S, . This is obvious for 1 < i<Z . 
For i>Z it follows from the fact that the Poisson brackets (F,Fj) 3 0 when 1 < a 

and j < 1. The completeness of (1.5) implies also the solvability of the system of equ- 

ations d@i 1 dS, = af, / d+i 

for the function @‘i , for every fixed value of i. 
Assume that (pi = d’i (S1, . . . , S1) (2.5) 

Then the functions (2.5) satisfy (2.3). Consequently (2.5) hold on the surface s. We 
can prove in a similar manner that cpij = Oij (sr, ,.., a!) on S. 

Note. We know f7] that under certain conditions imposed on the functions of (1.5). 
a solution of this system exists and is unique in the region 1 I@ -- Ea I< F with 1 < 
a <.I and for any I~ (1 + 1 < b < m) . This solution satisfies the initial value v (kr, . . ., 
5, ‘1+1, . . . ,&) = 0 hl+l, . . . , xm). The set of systems (2.3) can be used to obtain 

the solutions for the systems of the form (1.5) in the manner similar to that in which 
the system of bicharacteristic equations is used for the case of a single first order equa- 
tion. The solution of a system of partial differential equations is reduced to solving‘ I 
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systems of ordinary differential equations. 

3. Applying the procedures analogous to those in [S] (Sect. 1) to the case of the sur- 
face S belonging to the class c,, we obtain the following system defining the scalar 

functions oR (1 ,C Ic ,C r) : 

(3.1) 
ejAirk $+IIj=O (i=l,...,z) 

k=l f=l i 

(34 
k=l i=l 

m 

15~ = AU, + 2 AiUi + B, 
i=l 

where ei are the left null vectors of the matrix A. 
Since on S the rank of A is equal to ?L = n - T, a certain h -th order minor of the 

matrix A is nonzero. We can assume without loss of generality that 

It can be shown by direct computation that in (3.1) 

Since illj, (fa, ‘pb, xi, t) G 0, we have 

Using the relations (3.3), (3.4) and (2. l), we can write (3.1) in the form 

. f n) (3.3) 

(3.4) 

(3.5) 

Functions flj (So. ok, U+, Ui+, U,+) are obtained from (3.2) by substitution of the ex- 

pressions (2.1). 
The system (3.5) describes the transfer of a weak discontinuity along a characteristic 

surface of arbitrary class c, and shows that the discontinuity arising at some point of 
S propagates through an 1 -dimensional manifold. The system, similarly to the system 
of transport equations for the class C,: is not intrinsic, and makes possible the determin- 

ation of the magnitude of the discontinuity only when the flow is known on one side of 
the surface. 

4, In [S] the propagation of weak discontinuities is studied for the system of magne- 
togasdynamic equations in the case when the characteristic surface is adjacent to the 
region at rest and belongs to the class cr. If the magnetic intensity vector VV = 
{h,, h2, hs) is parallel to the normal to the characteristic surface Q (Xi) - t = 0 and 
the speed of sound c is equal to the Alfvkn velocity (c” = plw2 / p, \V2 = h,2 + 

h22+ hs2, where ~2 is the magnetic permeability and p is the density), the 
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characteristic surface belongs to the class Cs, satisfies the system of equations (pi = 
hi W-2 ,p’/r PI-’ If (i = 1, 2, 3) and becomes a plane when adjacent to the region at 

rest (hi = con&, p = const and ui = I) where Ui are the velocity vector compo- 
nents. ) 

Let us choose a coordinate system in such a manner that the equation of this plane 

has the form x1 - t = 0. Then the propagation of weak discontinuities along such a 
characteristic surface is described by the following system of transport equations: 

2 + i (3 + dip) = 0 (Xi = SJ 

i=l 

(4.1) 

%+2 +$ + QlQj = 0 (i = 293) 
3 

The system (4.1) is symmetrical hyperbolic and almost linear [l], and the plane rl = 
Sl = 0 for this system is a surface of three-dimensionril type. Therefore a solution to 

the Cauchy problem exists for (4.1) and is unique in some region R adjacent to the 
plane x1 = 0, provided that the functions oi (i = 1, 2, 3) are sufficiently smooth on 
this plane [l]. 

We shall show that under certain conditions imposed on the initial distribution of the 
weak discontinuities, the system (4.1) has a solution of the simple wave type near the 
initial manifold. Let us set ‘us = & (01) ando,a = $a ($1). Then for crl we obtain the 
following system of equations: 

2 + 2$j’ 2 + %Vj = O (i = 2,3) 

Assuming that B = +2’2++3’2#1 , we can rewrite this system as follows; 

ik51 _4i 

asi =TqE=-q 
(i=1,2,3) (4.3 

-4, = o,%%‘+ Q1wJ2'- @,2 + h2 + $2") 

Aj = 2 [~&j$~_j + $i’ (01” + $,a2 + $32) - QI*j - Odk-i~S-~~~l O’=2,3) 

where the dot indicates diffesentiation with respect to$. The system (4.2) has a solu- 

tion if A,’ A, - A, A,’ = 0 (Y, p = 1, 2, 3). These conditions hold if and only 
if 92 and $a satisfy the following system of ordinary differential equations 

A, = MIA,, Al = M,A, (4.3) 

where M, and &i2are constants. Since (4.3) has a solution dependent on arbitrary con- 
stants, the system (4.1) has a solution of the simple wave type under an arbitrary choice 
of constants. 

If conditions (4.3) hold, the function (TV satisfies 

This implies that the planes 



414 

t -I- x.&f,-’ f- x3M,-l = const (4.4) 

are equipotential surfaces for o1 and that a solution of (4.1) of the simple wave type 
exists near the plane xl = 0 , provided that the weak discontinuities are distributed 
on the initial manifold ~1 = 0 in such a manner that (Ti = const along the straight 

lines Mzs, + M,x:, = const . A weak discontinuity appearing on the line Msx, -/- 
ll/lrxa = const appears ar every point of the plane (4.4) and fills a two-dimensional 

manifold. In the general case, a weak discontinuity can obviously propagate from every 
point of the initial plane x1 = 0 over a three-dimensional manifold. 

We have an analogous case in crystal optics, where the normal to the characteristic 
surface plan is directed along the optical axis of the crystal. The characteristic surface 

satisfies the following system of equations (81 

‘El = 
[ 

&??a (81 - Ez) 

I 

‘:z ‘Ez = 0, ~!3 = 

L 

PIFl@~ - E3) 

1 

‘h 

p* (251 - E3) ’ p” (El - E3) 

(a > 62 > E3) 

where at, es and &s are th‘e dielectric constants in the directions of the coordinate 
axes. 

The system of transport equations has the form 

and can be easily reduced to a wave equation for each (si (I: = 1, 2) 

2f.k$&-‘E32(El - 83) d2Q / 1 a;‘% 2&&P% 
-- 

c4 (E?. - es) @I-t&3 a+ ’ 2&l as? 
&l o 

c2 (Ez - E3) (El - a-) -Gw= 

2y@3ez (Es - E3)3)3 a%? Q - &3 a%, 

C’F3 (El - &3) (El - t?$ 

; 2&G1E-? 8% =5 o 

where 82~ 2E3 as3” c3 (e1 - F*) at3 

t = ‘PA + (P3s3, .q = si (i = 1,2,3) 

2f?&3 (El - &a) 

(El - E2) {&2 - Fs) 

s2 

2s FI (E? i F3) 

q1 (El - 83) 
t 

Zen% s 
El--E3 ’ 

This confirms the well known effect of conical refraction which occurs when the nor- 
mal to the characteristic surface has the orientation indicated above. 

6, We shall consider the system (1.1) with conditions (1.6). We assume that the 
characteristic surface rr (xi) - t = 0 satisfies the equation Q1 = 0 and that in (1.2) 
!c, = 1. Under these conditions [I,:,] = 01: (where r is the right null vector of the 
matrix -4 and (5 is a scalar function) and the transport equation for (1.1) has the form 

iTI 
a -$- + 3 [c_jj Airi + e jJl B,P] _i- ~3 [e (V,x_4r) rj = 0 (5.l) 

2-l 
here 

CI=A,~Q~...Q,~=CI(~,(F~), B,=8B/du,, ri=ar/dsi 

e is the left null vector of pi. rx are the components of the vector r, and A,, is the 



algebraic complement of the element all of the matrix A (it is assumed that A,, # 0). 
Let us write the system of bicharacteristic equations for (1. I) 

dxJdt = qwrpi, dq,idt = 0 (i =2: 1, . . . , nz) (5.2) 

The functions 

‘pi = const, zi = (a& /&I,) t + Mi 

where c?QI / 6’9: and J/Ii are constants, represent a solution of this system, i.e. the 
b~characteristics are straight lines. 

Since (pi = con&, we have in (5.1) 
n 

a= const, e 2 B# = Z', = con&, e (V,Ar)r = T, = const 
x=1 

As we know, 

and this gives 

(5.3) 

Differentiating the equation Q1 = 0 with respect to xi and Zj (i, j = 1, ,.., m - 1) 
and inserting the values given by (5.3). we obtain the following system defining rpij (t) 

When ITS = 3 , the system (5.4) has the first integrals 

(5-5) 

which can be used to reduce it to a single equation 

@ii X.?J<Y -'- 3.v1f2 
-= 
dt z.T+1-'2 

(5.6) 

x = tag?- N'L(PLI (%,- Nl%?,)l' !- ~~N,%(P,, (N,N,cDn -f- 1) 

p=2iv @,,"cpl, -j- ff2z2 - M$,,y,,(r,, - Np,,) 

Solution of (5.6) has the form 

‘1’11 = 
a, (rij) -+- a; (Xii) (t + T3) 

03 (Xii) + nr (Xl;) (t -?- Ts)” 
(5.7) 

where T, is an arbitrary constant, and the values of the remaining vii (t) are defined 
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after inserting (5.7) into (5.5) and (5.3). 
It can easily be verified by direct computation that in (5.1) 

m m 

ex Airi= - f u 2 aik(Pik w9 
i-l i,k=l 

Taking (5.8) into account, let us insert into (5.1) the values of (Piti (t). For n = 2 
we haveqpik - Uik / (bil, - t),where a# and bik are constants. For m = 3 we util- 

ize (5.7). (5.5) and (5.3). obtaining the following transport equation 

d@t + 6 [h, + l/sh (t)] + h,sa = 0 

A ; 1=-v A,=&, (t + To)-’ + 
* @) = ( (1 + 114)-l, 

(t + TO)-l, m = 3 
m-2 

(5.9) 

a-’ = &‘f (t) [M + A, 1 e+t f-l&] 

(t + To)“~ (t + TO)“‘, 
f (4 = { (t + ZLp, 

m = 3 
m=2 

(5.10) 

where M is an arbitrary constant. 

If in (1.1) b;L = con&, then in (5.10) h, = 0. Thus the law of variation of 0 (t) 
with b,,, = const coincides,with the accuracy of up to the constant terms,with the gas- 
dynamic laws of propagation of weak discontinuities [3, 41. 

Since the form (1.1) with b+ = b+ (U) and uGLx = aax (u) is shared by numerous 

systems describing processes of continuum mechanics (plasticity, gasdynamics, magnet- 
ogasdynamics and others), the laws of propagation of discontinuities (5.10) are untver- 

sal 
Note. In the transport equation for the system of gasdynamic equations the value 

of the coefficient of o coincides with the mean curvature H of the surface v (ri) == t 
[4]. This is however not true for any arbitrary system (1.1). For example, in the case 
of magnetogasdynamics equations we have 

and the coefficient accompanying n (see (5.9)) is not equal to H. 
In conclusion the author thanks A. F. Sidorov for valuable advice and remarks. 
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We consider a nonstationary flow with stationary streamlines (i. e. a quasi-stat- 
ionary flow) of a perfect incompressible fluid in a conservative external force 
field. 

A specific property is obtained for the field of velocity directions of an irrot- 

ational quasi-stationary flow, a relationship determined between the moduli of 
the velocities of the quasi-stationary and the stationary flow with the same stre- 

amlines, and a possibility of existence of rotational and irrotational quasi-stat- 
ionary flows with common streamlines is studied. 

In [l - 31 the necessary conditions are obtained for the field of unit vectors 
in order that it may serve as a field of velocity directions of stationary flow of 

an incompressible fluid. An analogous problem for a quasi-stationary flow is 
solved in [4] only for the case when the field of velocity directions is rectilinear. 

1, Let us denote the unit velocity direction vector by e and the streamline curva- 
ture vector by k. The field of vectors I = k - e div e is called the field of adjoint 

vectors of the field of e. A vector field is called holonomic [5], if there exists a family 
of surfaces orthogonal to the field. The quantity H = div e is the mean curvature of 

the field of e [6]. A field of mean zero curvature is called the minimal field [l]. 
We shall now find the necessary and sufficient geometrical conditions for the field of 

unit vectors c in order that it may serve as a field of velocity directions of an irrotat - 
ional quasi-stationary flow. 

Theorem 1. The field of unit vectors e may serve as a field of velocity directions 
of an irrotational quasi-stationary flow if and only if 

1) the field of e is holonomic (em rot e = (‘); 
‘2) the field of its adjoint vectors is potential (,rot 1 = 0). 


